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PRkNN: Efficient and Privacy-Preserving
Reverse kNN Query over Encrypted Data
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Abstract—The advance of cloud computing has driven an emerging trend of outsourcing the rapidly growing data and query services
to a powerful cloud for easing the local storage and computing pressure. Meanwhile, when taking data privacy into account, data are
usually outsourced to the cloud in an encrypted form. As a result, query services have to be performed over the encrypted data.
Among all kinds of query services, the reverse kNN query is highly popular in various applications, such as taxi dispatching and
targeted push of multimedia information, but its privacy has not received sufficient attention. To our best knowledge, many existing
privacy-preserving reverse kNN query schemes still have some limitations on the query result accuracy, dataset privacy, and flexible
support for the choice of the query object and the parameter k. Aiming at addressing these limitations, in this paper, we propose an
efficient and privacy-preserving reverse kNN query scheme over encrypted data, named PRkNN. Specifically, we first design a
modified M-tree (MM-tree) to index the dataset and further present an MM-Tree based reverse kNN query algorithm in the filter and
refinement framework. Then, we leverage the lightweight matrix encryption to carefully design a filter predicate encryption scheme
(FPE) and a refinement predicate encryption scheme (RPE); and propose our PRkNN scheme by applying them to protect the privacy
of the MM-Tree based reverse kNN query algorithm. Detailed security analysis shows that FPE and RPE schemes are selectively
secure, and our PRkNN scheme can preserve both query privacy and dataset privacy. In addition, we conduct extensive experiments
to evaluate the performance of our scheme, and the results demonstrate that our scheme is efficient.

Index Terms—Reverse kNN, Encrypted Data, Privacy Preservation, Modified M-Tree, Filter-Refinement.

✦

1 INTRODUCTION

The increasing adoption of Industry 4.0, the advance of
wireless network technology, and the ubiquity of Internet
of Things have fostered the growing volumes of data gen-
erated in a wealth of fields and promoted the boom of the
big data market [1]. As reported by Technavio [2], the big
data market is predicted to have a progressive rise of over
USD 247 Billion at about 18% compound annual growth rate
during 2021-2025. As a key benefit, big data has the value of
offering a variety of data-based query services.

Due to the large data volume and limited processing
capabilities of the local data owner, an effective strategy
to house the big data and handle the query services is to
resort to the influential cloud computing technology, i.e.,
outsource the big data and the corresponding query services
to a powerful cloud server [3], [4]. However, since the cloud
server run by a third party is not fully trusted, the privacy
of the outsourced data has become a challenging issue.
Although data encryption techniques can naturally tackle
the privacy issue, they inevitably degrade and even disable
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the data utility, preventing the cloud server from performing
queries over the outsourced data.

Targeting different kinds of queries, various privacy-
preserving query schemes over outsourced data have been
proposed, but the research on privacy-preserving reverse
k nearest query (kNN) is far less than expected. The kNN
query is to retrieve top-k objects closest to an intentional
query object, while the reverse kNN query is to retrieve
objects regarding the query object as its kNN, as defined
by Definition 1 in Section 4. Since its query results reflect
the influence of the query object, the reverse kNN query has
broad applications, e.g., taxi dispatching and targeted push
of multimedia information [5].

Although some schemes for reverse kNN queries have
been proposed, most of them focus on improving the query
efficiency over plaintext without considering privacy is-
sues [5]. Several schemes [6]–[10] over encrypted data have
taken the privacy into consideration, but they still have
some limitations. Specifically, the anonymizing techniques
based schemes in [6], [7] ensure the query privacy in a
statistical manner while sacrificing the accuracy of query
results. The private information retrieval based scheme [8]
also only concerns the query privacy without considering
the dataset privacy. Although the schemes [9], [10] can
well preserve both the query privacy and the dataset pri-
vacy, they suffer from some practicality issues. The scheme
[9] was designed for spatial data, and it is not trivial to
extend the adopted Delaunay Triangulation structure to
index multi-dimensional data. Meanwhile, it limits users’
query objects to be exact ones existing in the outsourced
dataset. The scheme [10] requires the parameter k to be
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predefined, in which case users cannot select k according
to their personalized needs. Thus, it remains a challenge
to design a privacy-preserving reverse kNN query scheme
over encrypted multi-dimensional data supporting a flexible
choice of the query object and the parameter k.

Aiming at addressing this challenge, in this work, we
propose an efficient and privacy-preserving reverse kNN
query scheme, named PRkNN. Its core idea is to design a
modified M-tree (MM-tree) to index the multi-dimensional
dataset for improving the query efficiency and supporting
the reverse kNN query with a flexible query object and k.
Based on the MM-tree, we present a reverse kNN query
algorithm and further design a filter predicate encryption
scheme (FPE) and a refinement predicate encryption scheme
(RPE) to protect the reverse kNN query privacy over the
MM-tree. Our contributions are three folds as follows.
• First, we design an MM-tree to index the dataset and

further propose an MM-tree based reverse kNN query algo-
rithm in the filter and refinement framework. The algorithm
copes with reverse kNN queries in the order of filter and
refinement, where the former filters out candidate query
results and the latter further refines the candidate results.
Thanks to the filter strategy, the query efficiency can be
boosted by pruning some branches of the tree that cannot
include the query results.
• Second, to protect the privacy of MM-tree based

reverse kNN queries, we leverage the lightweight matrix
encryption to carefully propose a filter predicate encryption
scheme (FPE) and a refinement predicate encryption scheme
(RPE), which can provide the security guarantee for the
filter stage and refinement stage of the reverse kNN query
algorithm, respectively.
• Third, we propose our PRkNN scheme by applying

FPE and RPE schemes to preserve the privacy of the MM-
tree based reverse kNN query algorithm. Then, we rigor-
ously prove that both FPE and RPE schemes are selectively
secure in the simulation-based real/ideal worlds model and
show that our PRkNN scheme can preserve the privacy of
the query requests and dataset. We conduct extensive ex-
periments to evaluate its performance, and the experimental
results demonstrate that our scheme is efficient.

The remainder of this paper is organized as follows. In
Section 2, we present some related work. In Section 3, we
introduce our system model and security model. Then, we
describe some preliminaries in Section 4. In Section 5, we
introduce the building blocks of our scheme, including two
reverse kNN query algorithms over M-tree and MM-tree,
and detailed FPE and RPE schemes. In Section 6, we present
our scheme, followed by security analysis and performance
evaluation in Section 7 and Section 8, respectively. Finally,
we draw our conclusion in Section 9.

2 RELATED WORK

In this section, we review some existing works on privacy-
preserving kNN query and reverse kNN query, respectively.

2.1 Privacy-Preserving kNN Query

The kNN query, which targets retrieving top-k data records
having the smallest distances to a query record, has a

growing number of applications in various fields, including
eHealthcare, location-based services, and signal process-
ing. It has therefore received considerable attention from
the industry and academia, and a good many privacy-
preserving kNN query schemes have been designed us-
ing matrix encryption, homomorphic encryption, private
information retrieval, and other privacy preservation tech-
niques. In 2009, Wong et al. [11] designed an asymmetric
scalar-product-preserving encryption (ASPE) to realize kNN
queries, in which the privacy of both dataset records and
query records are considered. Based on the ASPE scheme,
many privacy-preserving kNN query and similarity range
query schemes [12]–[17] were subsequently proposed. How-
ever, such schemes cannot resist known-plaintext attacks
as proved in [18], so they only have a weak security. To
enhance the security of kNN queries, Zheng et al. [19] pro-
posed a modified ASPE scheme by introducing more ran-
dom numbers into ciphertexts. Meanwhile, many schemes
[20]–[23] leverage homomorphic encryption techniques to
protect the data privacy and query privacy, where the
schemes [21], [22] can even protect the access pattern pri-
vacy of the dataset. In addition, some privacy-preserving
kNN query schemes [24]–[27] were designed by employing
other privacy preservation techniques, e.g., private informa-
tion retrieval.

2.2 Privacy-Preserving Reverse kNN Query

Reverse kNN query, which targets retrieving data records
regarding the query record as kNN, has attracted a growing
interest from the industry and academia. Many researches
have been done for processing reverse kNN query [5], but
only a limited number of works take the privacy into consid-
eration. Specifically, Du et al. [6] presented a privacy-aware
reverse kNN query scheme for location-based services by
designing a structure, called Voronoi Cell for Regions (VCR),
and anonymizing locations in dataset and query requests
into rectangles, where the similarity is measured by the
Manhattan distance. Due to the anonymizing strategy, this
scheme cannot return inaccurate query results. Lin et al. [7]
utilized the anonymization techniques to design a privacy-
preserving reverse NN query scheme in the scenario of
road network, which can protect the query privacy to some
degree. However, since this scheme performs reverse kNN
query over uncertain data, the query results are also not
accurate. To strengthen the security, Pournajaf et al. [8]
designed a privacy-preserving reverse kNN query scheme
based on the private information retrieval technique. Al-
though the proposed scheme can provide a strong privacy
guarantee for the query records, it also does not take the
dataset privacy into consideration. Targeting at protecting
both the dataset privacy and query privacy, Li et al. [9]
employed Delaunay Triangulation as the index structure
and further utilized structure encryption, order-preserving
encryption as well as the ASPE scheme to design a privacy-
preserving reverse kNN query scheme for encrypted spa-
tial data. The proposed scheme can not only efficiently
support reverse kNN queries but also dynamically update
the dataset. However, since this work focuses on two-
dimensional spatial data and it is not trivial to extend the
adopted Delaunay Triangulation structure to index multi-
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dimensional data, the proposed scheme is unable to sup-
port reverse kNN queries over multi-dimensional data. In
addition, the scheme limits users’ query records to be ones
existing in the outsourced dataset. To date, the scheme in
[10] is the only scheme that can support privacy-preserving
reverse kNN queries over encrypted multi-dimensional data
and an arbitrary choice of query records. Nevertheless, the
parameter k in this scheme must be fixed and predefined be-
fore outsourcing the dataset to the cloud, which constrains
its flexibility and application scenarios.

Different from the aforementioned schemes, our PRkNN
scheme can support privacy-preserving reverse kNN
queries over encrypted multi-dimensional data, an arbitrary
choice of query records, and the flexible choice of k.

3 SYSTEM MODEL AND SECURITY MODEL

In this section, we define the system model and security
model considered in our scheme.

Data Owner

Cloud Server

Query Users

1. Dataset Outsourcing 

Dataset
x1 = (x1,1, x1,2, ⋯, x1,d)
x2 = (x2,1, x2,2, ⋯, x2,d)

xn = (xn,1, xn,2, ⋯, xn,d)
⋯⋯ 3. Query Result:  RkNN(q) 2. Reverse kNN Query 

Request:   (q, k)

0. AuthorizaEon

Fig. 1. System model under consideration

3.1 System Model
Our system focuses on a reverse kNN query model under
the cloud outsourcing scenario with three kinds of partici-
pants: one data owner, one cloud server, and multiple query
users, as depicted in Fig. 1.
• Data Owner: The data owner has accumulated a

large dataset with n d-dimensional records, denoted by
X = {xi = (xi,1, xi,2, · · · , xi,d)|i = 1, 2, · · · , n}. To derive
benefits from the data, the data owner exploits X to offer
reverse kNN query services to users in need. Meanwhile,
owing to the limited computing power, it outsources X
together with the corresponding reverse kNN query services
to the cloud server. To get a fast response on the query action
and protect the privacy of X , the data owner indexes the
dataset with a customized tree structure and encrypts the
index before outsourcing it to the cloud server. Meanwhile,
without loss of generality, we assume that all data in the
system are integers. If they are not, we can transform
them into integers by scaling. Especially, when transforming
decimals into integers, the scaling ratio is set based on the
precision requirement of real applications. If the precision
requirement is high, we can choose a large ratio. Otherwise,
we can choose a small ratio.
• Cloud Server: The cloud server with high computing

power is delegated by the data owner to offer reverse kNN

query services to query users. Suppose that (q, k) is a
reverse kNN query request, where q = (q1, q2, · · · , qd) is a
d-dimensional query record and k is a positive integer. Upon
receiving (q, k) from a query user, the cloud server traverses
the encrypted index of X for all records regarding q as one
of their k nearest neighbors, i.e., RkNN(q) = {xi|xi ∈
X , d(q,xi) ≤ d(kNN(xi),xi)}, where kNN(xi) denotes
the k-th closest record to xi in X and d(·, ·) denotes the
Euclidean distance metric. Finally, the cloud server sends
RkNN(q) to the query user as the query result.
• Query Users U = {U1, U2, · · · }: Our scheme serves for

multiple query users U = {U1, U2, · · · }. To ensure that the
service is only enjoyed by legitimate users, each Ui is re-
quired to be authorized by the data owner when registering
in the system. After that, Ui is eligible to launch reverse
kNN query requests to the cloud server.

3.2 Security Model
In our security model, since the data owner is in charge of
establishing the entire system, we take it for granted that the
data owner is trusted. For the cloud server, it is managed by
a third-party vendor, and as a result, is assumed to be semi-
honest. To be specific, the cloud server will handle reverse
kNN queries in full accordance with our scheme but may
be curious to infer the plaintext of the dataset and query
requests. Regarding query users, they are authorized by the
data owner, and their misbehaviors may result in serious
penalties and even the revocation of authorization from
the data owner. Hence, we assume that query users are
honest, fully following our scheme to launch reverse kNN
query requests and not colluding with the cloud server.
Note that the system may be subject to other passive or
active attacks, such as DoS attack. Since this work focuses
on privacy preservation, those attacks are beyond the scope
of this paper and will be discussed in our future work.

4 PRELIMINARIES

In this section, we recall the formal definition of reverse
kNN query and the structure of M-tree that will serve as the
preliminaries of our scheme.
• Definition of reverse kNN query: Let X = {xi =

(xi,1, xi,2, · · · , xi,d)|i = 1, 2, · · · , n} be a dataset and q =
(q1, q2, · · · , qd) be a d-dimensional query record, and k be
a positive integer. The reverse kNN query can be formally
defined as the following Definition 1.

Definition 1 (Reverse kNN Query) A reverse kNN query is
in the form of (q, k) and aims to search on X for records
regarding q as one of their kNN, and the query result is
RkNN(q) = {xi|xi ∈ X , d(q,xi) ≤ d(kNN(xi),xi)}, where
kNN(xi) denotes the k-th closest record to xi in X , and d(·, ·)
denotes the Euclidean distance metric.

• M-tree: M-tree is a tree-based data structure designed
for organizing data records based on the distance metric
(i.e., Euclidean distance in our work) [28]. Each internal
node defines a ball region B(p, τ) with a pivot record p
as the center and a value τ as the radius. Meanwhile, each
internal node keeps a set of pointers (p1, p2, · · · ) pointing to
its child nodes in the next level, where all child nodes’ ball
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Algorithm 1 RkNNQuery(Tree T, Query (q, k))
1: Set C = ∅; // Candidate result
2: Set R = ∅; // Final result

// Filter stage
3: C = Filter(T.root, (q, k));

// Refinement stage
4: for each xi ∈ C do
5: τxi,k = d(kNN(xi),xi);
6: if d(xi,q) ≤ τxi,k then
7: R = R∪ {xi};
8: return R;

regions reside on the ball region of the current internal node.
Particularly, in the original M-tree, to speed up the efficiency
of nearest neighbor queries, each internal node keeps a
distance value from its ball region center to its parent node’s
ball region center. Since we focus on the reverse kNN query
without using this value, we remove it from our M-tree.

5 BUILDING BLOCKS

In this section, we propose two reverse kNN query algo-
rithms over M-tree and MM-tree, our FPE scheme, and RPE
scheme, which are building blocks of our scheme.

5.1 M-Tree based Reverse kNN Query Algorithm

Let T be an M-tree built based on the dataset X = {xi|i =
1, 2, · · · , n} and (q, k) be a reverse kNN query. The M-
tree based reverse kNN query algorithm can be applied to
perform the reverse kNN query (q, k) over the M-tree T.
The algorithm is designed based on a filter and refinement
framework, which deals with reverse kNN queries through
a filter stage and a refinement stage. The former discards
some records having no contribution to the query answer
and produces a candidate query result, which is then refined
by the latter stage as shown in Algorithm 1.
• Filter stage: As shown in Algorithm 2, the searcher

in this stage traverses T in a depth-first manner. When
the traversed node is a leaf node with a record xi, the
searcher directly places xi into the candidate result, namely,
C = C ∪ {xi}. In case where the traversed one is an
internal node with a ball region B(p, τ), if the node sat-
isfies: i) the number of records covered by the node is
equal to or larger than k, i.e., |Records(node)| ≥ k; and ii)
d(p,q) > 2τ + d(kNN(p),p), then all records covered by
this node cannot contribute to the query answer and can be
discarded. Otherwise, the searcher moves forward to filter
each child, i.e., node.pi, of the current node.
• Refinement stage: As shown in Algorithm 1, the

searcher in this stage refines the candidate result C. For each
xi ∈ C, if it meets that d(xi,q) ≤ d(kNN(xi),xi), xi is a
reverse kNN of q and placed into the final query result, i.e.,
R = R∪ {xi}.

Theorem 1 (Correctness) The M-tree based reverse kNN query
algorithm is correct.

Proof. We show the correctness of the M-tree based
reverse kNN query algorithm by respectively proving the
correctness of the filter stage and refinement stage.

Algorithm 2 Filter(Node node, Query (q, k))
1: if node is a leaf with xi then
2: C = C ∪ {xi};
3: else if node is an internal node with B(p, τ) then
4: τp,k = d(kNN(p),p);
5: if |Records(node)| ≥ k and d(p,q) > 2τ + τp,k then
6: continue;
7: else
8: for each child of p, i.e., node.pi, do
9: Filter(node.pi, (q, k));
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Fig. 2. Illustration for the correctness of filter stage

In the filter stage, when a node with B(p, τ) satisfies
|Records(node)| ≥ k and d(p,q) > 2τ + d(kNN(p),p), all
records residing on the node will be discarded. The filter
strategy is correct because these discarded records cannot
be the reverse kNN of q. Specifically, suppose that τp,k =
d(kNN(p),p) is the distance between p and its k-th closest
record kNN(p). Then, when |Records(node)| ≥ k, there is a
ball B(p, τp,k) with p as the center and τp,k as the radius
inside the ball B(p, τ), as shown in Fig. 2. Meanwhile,
B(p, τp,k) contains at least k records. Since the distance from
each record xi ∈ B(p, τ) to any record xj ∈ B(p, τp,k) is
equal to or less than τ + τp,k, i.e., d(xi,xj) ≤ τ + τp,k,
the distance between xi to kNN(xi) is equal to or less than
τ + τp,k, i.e., d(xi, kNN(xi)) ≤ τ + τp,k. On the other hand,
the distance between q to xi is equal to or greater than
d(p,q)−τ , namely, d(q,xi) ≥ d(p,q)−τ . In this case, when
d(p,q) − τ > τ + τp,k, i.e., d(p,q) > 2τ + τp,k, we have
d(q,xi) > d(xi, kNN(xi)). It means that q cannot be one of
xi’s kNN, and as a result, xi is not the reverse kNN of q. All
discarded records in B(p, τ) cannot be the reverse kNN of q.
Therefore, the filter stage is correct. For the refinement stage,
the refinement inequality is d(xi,q) ≤ d(kNN(xi),xi), and
the correctness is oblivious. □

5.2 MM-tree based Reverse kNN Query Algorithm
In this subsection, we propose a modified M-tree, named
MM-tree, and an MM-tree based reverse kNN query al-
gorithm. MM-tree is designed by modifying M-tree. Since
the M-tree based reverse kNN query algorithm needs to
compute τp,k = d(kNN(p),p) and τxi,k = d(kNN(xi),xi)
when filtering the internal node with (p, τ) and refining
the leaf node with xi. To speed up the query efficiency and
facilitate the design of the subsequent privacy preservation
scheme, we make some modifications to M-tree as follows.

(1) The number of records covered by each internal node
must be equal to or greater than a predefined value
kmax, i.e., |Records(node)| ≥ kmax.
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(2) In addition to (p, τ), each internal node is
attached an additional distance list Lp =
[τp,1, τp,2, · · · , τp,kmax

], where τp,k = d(kNN(p),p).
(3) Besides xi, each leaf node is attached an additional

distance list Lxi
= [τxi,1, τxi,2, · · · , τxi,kmax

], where
τxi,k = d(kNN(xi),xi).

The modified M-tree is our MM-tree, which can ef-
ficiently support reverse kNN queries whose k satisfies
k ≤ kmax. Since each internal node in MM-tree satis-
fies |Records(node)| ≥ kmax ≥ k, we naturally have
|Records(node)| ≥ k. Thus, the filter condition in Algo-
rithm 2 will become d(p,q) > 2τ + τp,k. In this case, the
basic operations in the filter and refinement stages of reverse
kNN queries over MM-Tree can be summarized as:

{
d(p,q) > 2τ + τp,k Filter stage
d(xi,q) ≤ τxi,k Refinement stage.

(1)

Therefore, preserving the privacy of MM-Tree based
reverse kNN queries is to protect the computation privacy
of two inequalities in Eq. (1), which can be achieved by the
FPE scheme and RPE scheme in Section 5.3 and Section 5.4.

5.3 FPE Scheme

On input a reverse kNN query (q, k) and an internal node
with (p, τ, Lp = [τp,1, τp,2, · · · , τp,kmax

]), the filter predica-
tion encryption, i.e., FPE scheme, is designed to privately
determine whether the filter inequality holds or not, i.e.,
whether d(p,q) > 2τ + τp,k or not.

First, we have

d(p,q) > 2τ + τp,k

⇔ d(p,q)2 > (2τ + τp,k)
2

⇔ ||p||2 − 4τ2 − 4ττp,k − τ2p,k − 2p ◦ q+ ||q||2 > 0. (2)

If let 

P =
[
||p||2 − 4τ2 τ p 1

]

Q =


1 0 0

0 −4 0

−2q 0 0

||q||2 0 −1


T =

 1 1 · · · 1

τp,1 τp,2 · · · τp,kmax

τ2p,1 τ2p,2 · · · τ2p,kmax


ek =

[
0 · · · 1 · · · 0

]

(3)

we can infer that

PQTeTk = ||p||2 − 4τ2 − 4ττp,k − τ2p,k − 2p ◦ q+ ||q||2,

where ek is a kmax-dimensional vector with ek,k = 1 and
ek,i = 0 for i ̸= k. By further combining the equation with
Eq. (2), we have

d(p,q) > 2τ + τp,k ⇔ PQTeTk > 0. (4)

Thus, privately determining “d(p,q) > 2τ + τp,k” is equiv-
alent to privately determine that of “PQTeTk > 0”. Con-
sidering that P, Q, T, ek are either vectors or matrices,

we utilize matrix encryption to devise our FPE scheme for
protecting the privacy of “PQTeTk > 0”. The main idea of
our scheme is to randomly split each of P, Q, T, ek into two
parts {P1,P2}, {Q1,Q2}, {T1,T2}, {ek,1, ek,2} such that{

P1 +P2 = P; Q1 +Q2 = Q;

T1 +T2 = T; ek,1 + ek,2 = ek.
(5)

For example, we can split P by 1) randomly choosing a
matrix P1 with the same size as P; and 2) computing P2 =
P − P1. In a similar way, Q, T, and ek can be respectively
split into {Q1,Q2}, {T1,T2}, {ek,1, ek,2}. After splitting,
we have

PQTeTk =(P1 +P2)(Q1 +Q2)(T1 +T2)(e
T
k,1 +PT

k,2)

=
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

PuQvTle
T
k,z. (6)

Then, we use secret matrices to encrypt {Pu,Qv,Tl, ek,z}
for {u, v, l, z} ∈ {1, 2}. Since {Pu,Tl} and {Qv, ek,z} are
respectively held by the data owner and query user, they
will be independently encrypted into a ciphertext CP,T and
a trapdoor TDQ,ek

by the data owner and the query user
using FPE.Enc(sk,P,T) and FPE.TrapdoorGen(sk,Q, ek)
algorithms below. Based on CP,T and TDQ,ek

, we can do the
filter using FPE.FilterQuery(CP,T, TDQ,ek

) algorithm below.
Specifically, the FPE scheme has four algorithms, i.e., ΠFPE =
(FPE.Setup,FPE.Enc,FPE.TrapdoorGen,FPE.FilterQuery).
• FPE.Setup(d): Given the dimensions of data to be

processed, denoted by d, the setup algorithm setups the
scheme by randomly selecting a group of invertible matrices
as the secret key, namely,

sk = {M1,u,v,l,z,M2,u,v,l,z,M3,u,v,l,z,M
′
1,u,v,l,z,

M′
2,u,v,l,z,M

′
3,u,v,l,z|{u, v, l, z} ∈ {1, 2}}. (7)

where
M1,u,v,l,z,M

′
1,u,v,l,z ∈ R(d+6)×(d+6)

M2,u,v,l,z,M
′
2,u,v,l,z ∈ R6×6

M3,u,v,l,z,M
′
3,u,v,l,z ∈ R(kmax+3)×(kmax+3).

(8)

and R is the real domain. It is worth noting that each
of {M1,u,v,l,z,M2,u,v,l,z,M3,u,v,l,z,M

′
1,u,v,l,z,M

′
2,u,v,l,z,

M′
3,u,v,l,z} is related to 16 matrices, since {u, v, l, z} can be

1 or 2, . As a result, sk contains 96 matrices.
• FPE.Enc(sk,P,T): The encryption algorithm utilizes

sk to encrypt P and T in Eq. (3) as follows.
Step 1: The encryptor randomly splits P into two vectors

P1 and P2 by 1) randomly choosing a matrix P1 ∈ Rd+3;
and 2) computing P2 = P − P1. That is, P = P1 + P2.
Similarly, it randomly splits T into two matrices T1 and T2

such that T = T1 +T2, where {T1,T2} ∈ R3×kmax .
Step 2: The encryptor chooses a set of random num-

bers in the real domain, including i) random numbers
rP > 0, rT > 0, r′P > 0, and r′T > 0; ii) random
numbers {rPu,v,l,z

, rTu,v,l,z
, rP′

u,v,l,z
, rT′

u,v,l,z
|{u, v, l, z} ∈

{1, 2}} satisfying 1
2rP > rPu,v,l,z

> 0, 1
2rT > rTu,v,l,z

> 0,
1
2r

′
P > rP′

u,v,l,z
> 0, and 1

2r
′
T > rT′

u,v,l,z
> 0 for
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{u, v, l, z} ∈ {1, 2}; and iii) random numbers {αPu,v,l,z
,

αTu,v,l,z
, αP′

u,v,l,z
, αT′

u,v,l,z
|{u, v, l, z} ∈ {1, 2}} satisfying

2∑
u=1

2∑
v=1

2∑
l=1

2∑
z=1

(αPu,v,l,z
αTu,v,l,z

+ αP′
u,v,l,z

αT′
u,v,l,z

) = 0.

(9)

Since {αPu,v,l,z
, αTu,v,l,z

, αP′
u,v,l,z

, αT′
u,v,l,z

|{u, v, l, z} ∈
{1, 2}} is a set with 64 random numbers, we can first choose
63 random numbers and the last one is computed based on
Eq. (9). These random numbers are different for different
P’s and T’s.

Step 3: The encryptor encrypts P into ciphertexts.
(1) Extend P to a group of (d + 6)-dimensional vectors

{Pu,v,l,z,P
′
u,v,l,z|{u, v, l, z} ∈ {1, 2}} asPu,v,l,z =

[
rP ∗Pu −rPu,v,l,z

αPu,v,l,z
1
]

P′
u,v,l,z =

[
r′P ∗Pu −rP′

u,v,l,z
αP′

u,v,l,z
1
]
.

(10)

(2) Encrypt each Pu,v,l,z and P′
u,v,l,z into ciphertexts as{

CPu,v,l,z
= Pu,v,l,zM1,u,v,l,z

CP′
u,v,l,z

= P′
u,v,l,zM

′
1,u,v,l,z.

(11)

Step 4: The encryptor encrypts T into ciphertexts.
(1) Extend T to a group of 6 × (kmax + 3) matrices

{Tu,v,l,z,T
′
u,v,l,z|{u, v, l, z} ∈ {1, 2}} as

Tu,v,l,z =


rT ∗Tl O O O

O rTu,v,l,z
0 0

O 0 αTu,v,l,z
0

O 0 0 1



T′
u,v,l,z =


r′T ∗Tl O O O

O rT′
u,v,l,z

0 0

O 0 αT′
u,v,l,z

0

O 0 0 1

 .

(12)

(2) Encrypt each Tu,v,l,z and T′
u,v,l,z into ciphertexts as{

CTu,v,l,z
= M−1

2,u,v,l,zTu,v,l,zM3,u,v,l,z;

CT′
u,v,l,z

= M′−1
2,u,v,l,zT

′
u,v,l,zM

′
3,u,v,l,z.

(13)

Step 5: The encryption algorithm finally outputs the
ciphertext of P and T, i.e., CP,T = {CPu,v,l,z

, CP′
u,v,l,z

,

CTu,v,l,z
, CT′

u,v,l,z
|{u, v, l, z} ∈ {1, 2}}.

• FPE.TrapdoorGen(sk,Q, ek): The trapdoor generation
algorithm utilizes the secret key sk to generate trapdoors for
Q and ek in Eq. (3) as follows.

Step 1: The generator randomly splits Q into two
matrices Q1 and Q2 such that Q = Q1 + Q2, where
{Q1,Q2} ∈ R(d+3)×3. Similarly, it randomly splits ek into
two vectors ek,1 and ek,2 such that ek = ek,1 + ek,2, where
{ek,1, ek,2} ∈ Rkmax .

Step 2: The generator chooses a set of random numbers
in the real domain, including i) random numbers rQ > 0,
rek

> 0, r′Q > 0, and r′ek
> 0; ii) random numbers

{rQu,v,l,z
, rek,u,v,l,z

, rQ′
u,v,l,z

, re′
k,u,v,l,z

|{u, v, l, z} ∈ {1, 2}}
such that 1

2rQ > rQu,v,l,z
> 0, 1

2rek
> rek,u,v,l,z

> 0,
1
2r

′
Q > rQ′

u,v,l,z
> 0, and 1

2r
′
ek

> re′
k,u,v,l,z

> 0

for {u, v, l, z} ∈ {1, 2}; and iii) random numbers

{αQu,v,l,z
, αek,u,v,l,z

, αQ′
u,v,l,z

, αe′
k,u,v,l,z

|{u, v, l, z} ∈ {1, 2}}
satisfying

∑2
u=1

∑2
v=1

∑2
l=1

∑2
z=1(αQu,v,l,z

αek,u,v,l,z
+

αQ′
u,v,l,z

αe′
k,u,v,l,z

) = 0, which are gener-
ated in a similar way to that of {αPu,v,l,z

,
αTu,v,l,z

, αP′
u,v,l,z

, αT′
u,v,l,z

|{u, v, l, z} ∈ {1, 2}}. These
random numbers are different for different Q’s and ek’s.

Step 3: The generator generates trapdoors for Q.
(1) Extend Q to a group of (d + 6) × 6 matrices

{Qu,v,l,z,Q
′
u,v,l,z|{u, v, l, z} ∈ {1, 2}} as

Qu,v,l,z =


rQ ∗Qv O O O

O rQu,v,l,z
0 0

O 0 1 0

O 0 0 αQu,v,l,z



Q′
u,v,l,z =


r′Q ∗Qv O O O

O rQ′
u,v,l,z

0 0

O 0 1 0

O 0 0 αQ′
u,v,l,z

 .

(14)

(2) Encrypt Qu,v,l,z and Q′
u,v,l,z into trapdoors as{

TDQu,v,l,z
= M−1

1,u,v,l,zQu,v,l,zM2,u,v,l,z

TDQ′
u,v,l,z

= M′−1
1,u,v,l,zQ

′
u,v,l,zM

′
2,u,v,l,z.

(15)

Step 4: The generator generates trapdoors for ek.
(1) Extend ek to a group of (kmax + 3)-dimensional

vectors {ek,u,v,l,z, e′k,u,v,l,z|{u, v, l, z} ∈ {1, 2}} as ek,u,v,l,z =
[
rek
∗ ek,z rek,u,v,l,z

1 αek,u,v,l,z

]
e′k,u,v,l,z =

[
r′ek
∗ ek,z re′

k,u,v,l,z
1 αe′

k,u,v,l,z

]
.

(16)

(2) Encrypt each ek,u,v,l,z and e′k,u,v,l,z into trapdoors as{
TDek,u,v,l,z

= M−1
3,u,v,l,ze

T
k,u,v,l,z;

TDe′
k,u,v,l,z

= M′−1
3,u,v,l,ze

′T
k,u,v,l,z.

(17)

Step 5: The trapdoor generation algorithm outputs
the trapdoor of Q and ek, i.e., TDQ,ek

= {TDQu,v,l,z
,

TDQ′
u,v,l,z

, TDek,u,v,l,z
, TDe′

k,u,v,l,z
|{u, v, l, z} ∈ {1, 2}}.

• FPE.FilterQuery(CP,T, TDQ,ek
): On input the ciphertext

CP,T and the trapdoor TDQ,ek
, the evaluator first calculates

s =
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

(CPu,v,l,z
TDQu,v,l,z

CTu,v,l,z
TDek,u,v,l,z

+

CP′
u,v,l,z

TDQ′
u,v,l,z

CT′
u,v,l,z

TDe′
k,u,v,l,z

). (18)

If s > 0, the evaluator returns 1 to demonstrate that
“PQTeTk > 0” and returns 0 to demonstrate that
“PQTeTk ≤ 0” otherwise.

Theorem 2 The FPE scheme is correct.

Proof. The FPE scheme is correct iff s > 0 ⇔ PQTeTk >
0. First, we have

s > 0⇔
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

(CPu,v,l,z
TDQu,v,l,z

CTu,v,l,z
TDek,u,v,l,z

+ CP′
u,v,l,z

TDQ′
u,v,l,z

CT′
u,v,l,z

TDe′
k,u,v,l,z

) > 0. (19)
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Meanwhile, we have CPu,v,l,z
TDQu,v,l,z

CTu,v,l,z
TDek,u,v,l,z

= rP ∗ rQ ∗ rT ∗ rek
∗PuQvTle

T
k,z + (αPu,v,l,z

∗ αTu,v,l,z
+

αQu,v,l,z
∗αek,u,v,l,z

)−rPu,v,l,z
∗rTu,v,l,z

∗rQu,v,l,z
∗rek,u,v,l,z

and CP′
u,v,l,z

TDQ′
u,v,l,z

CT′
u,v,l,z

TDe′
k,u,v,l,z

= r′P∗r′Q∗r′T∗r′ek
∗

PuQvTle
T
k,z +(αP′

u,v,l,z
∗αT′

u,v,l,z
+αQ′

u,v,l,z
∗αe′

k,u,v,l,z
)−

rP′
u,v,l,z

∗ rT′
u,v,l,z

∗ rQ′
u,v,l,z

∗ re′
k,u,v,l,z

.
Based on the FPE scheme, we further have∑2

u=1

∑2
v=1

∑2
l=1

∑2
z=1(αPu,v,l,z

∗ αTu,v,l,z
+ αP′

u,v,l,z
∗

αT′
u,v,l,z

) = 0 and
∑2

u=1

∑2
v=1

∑2
l=1

∑2
z=1(αQu,v,l,z

∗
αek,u,v,l,z

+ αQ′
u,v,l,z

∗ αe′
k,u,v,l,z

) = 0. Then, if we let
rP,Q,T,ek

= rP ∗ rQ ∗ rT ∗ rek

r′P,Q,T,ek
= r′P ∗ r′Q ∗ r′T ∗ r′ek

rP,Q,T,ek,u,v,l,z = rPu,v,l,z
∗ rTu,v,l,z

∗ rQu,v,l,z
∗ rek,u,v,l,z

r′P,Q,T,ek,u,v,l,z
= rP′

u,v,l,z
∗ rT′

u,v,l,z
∗ rQ′

u,v,l,z
∗ re′

k,u,v,l,z
,

(20)

we can infer that

s = (rP,Q,T,ek
+ r′P,Q,T,ek

)
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

PuQvTle
T
k,z−

2∑
u=1

2∑
v=1

2∑
l=1

2∑
z=1

(rP,Q,T,ek,u,v,l,z
+ r′P,Q,T,ek,u,v,l,z

). (21)

Based on the FPE scheme, we further have i) 1
2rP >

rPu,v,l,z
> 0, 1

2rT > rTu,v,l,z
> 0, 1

2r
′
P > rP′

u,v,l,z
> 0, and

1
2r

′
T > rT′

u,v,l,z
> 0 for {u, v, l, z} ∈ {1, 2}; and ii) 1

2rQ >

rQu,v,l,z
> 0, 1

2rek
> rek,u,v,l,z

> 0, 1
2r

′
Q > rQ′

u,v,l,z
> 0,

and 1
2r

′
ek

> re′
k,u,v,l,z

> 0 for {u, v, l, z} ∈ {1, 2}. We have{
1
16rP,Q,T,ek

> rP,Q,T,ek,u,v,l,z
1
16r

′
P,Q,T,ek

> r′P,Q,T,ek,u,v,l,z

⇔
{
rP,Q,T,ek

>
∑2

u=1

∑2
v=1

∑2
l=1

∑2
z=1 rP,Q,T,ek,u,v,l,z

r′P,Q,T,ek
>

∑2
u=1

∑2
v=1

∑2
l=1

∑2
z=1 r

′
P,Q,T,ek,u,v,l,z

.

(22)

Furthermore, we have

rP,Q,T,ek
+ r′P,Q,T,ek

>
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

(rP,Q,T,ek,u,v,l,z + r′P,Q,T,ek,u,v,l,z
). (23)

In addition, since P, Q, T, and ek are integer vectors or
matrices, according to Eq. (21) and Eq. (23), we have

s > 0⇔
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

PuQvTle
T
k,z > 0

⇔ (P1 +P2)(Q1 +Q2)(T1 +T2)(e
T
k,1 + eTk,2) > 0

⇔ PQTeTk > 0. (24)

Thus, the FPE scheme is correct. □
Remark. The intuition of splitting each of {P,Q,T, ek}

into two parts is to enable our scheme to resist against
known-plaintext attacks. We take the encryption of ek as
an example to show that if ek is not split, our scheme will
suffer from known-plaintext attacks. Specifically, if ek is not
split, we will encrypt it as follows.

(1) Extend ek to a (kmax + 3)-dimensional vector as ek =
[
rek,1 ∗ ek rek,2 1 αek

]
e′k =

[
r′ek,1

∗ ek r′ek,2
1 αe′

k

]
.

(25)

(2) Encrypt each ek and e′k into trapdoors as

TDek
= M−1

3 eTk and TDe′
k
= M′−1

3 e′
T
k . (26)

We regard M−1
3 to be a matrix with (kmax+3) columns as

M−1
3 = [m1,m2, · · · ,mkmax+3 ].

Then, TDek
= M−1

3 eTk can be represented as M−1
3 eTk =

rek,1 ∗mk + rek,2 ∗mkmax+1 + mkmax+2 + αek
∗mkmax+3 .

When k = 1, we have TDek
= M−1

3 eT1 =
re1,1 ∗m1 + re1,2 ∗mkmax+1 + mkmax+2 + αe1 ∗mkmax+3 .
That is, M−1

3 eT1 is a linear combination of
{m1,mkmax+1 ,mkmax+2 ,mkmax+3}. When an adversary has
many pairs of {e(i)1 , TD

(i)
e1 }ni=1 with k = 1. All of {TD(i)e1 }ni=1

are linear combination of {m1,mkmax+1
,mkmax+2

,

mkmax+3
}. Then, the rank of {TD(i)e1 }ni=1 will be

the rank of {m1,mkmax+1
,mkmax+2

,mkmax+3
}, i.e.,

rank({TD(i)e1 }ni=1) = 4. In this case, given a new ciphertext
TDek

, we can test whether rank({TD(i)e1 }ni=1 ∩ TDek
)

?
= 4.

If yes, TDek
will also be a linear combination of

{m1,mkmax+1 ,mkmax+2 ,mkmax+3}. Then, ek will be
e1 = (1, 0, 0, · · · , 0), which violates the privacy of ek.

Differently, in our scheme, we split ek to two random
vectors such that any TDek

is a random linear combination of
{m1,m2, · · · ,mkmax+3}. Thus, rank({TD(i)e1 }ni=1) = kmax+3

for any n ≥ kmax+3, which makes our scheme free of the
known-plaintext attacks.

5.4 RPE Scheme
On input a reverse kNN query (q, k) and a leaf node with
(xi, Lxi = [τxi,1, τxi,2, · · · , τxi,kmax ]), the RPE scheme is
designed to privately determine whether the refinement
inequality holds or not, i.e., whether d(xi,q) ≤ τxi,k or not.
First, we have

d(xi,q) ≤ τxi,k ⇔ d(xi,q)
2 − τ2xi,k ≤ 0

⇔ ||xi||2 − 2xi ◦ q+ ||q||2 − τ2xi,k ≤ 0. (27)

If let 

X̃i =
[
||xi||2 xi 1

]
Q̃ =

 1 0

−2q 0

||q||2 −1


T̃ =

[
1 1 · · · 1

τ2xi,1 τ2xi,2 · · · τ2xi,kmax

]
ẽk =

[
0 · · · 1 · · · 0

]
(28)

we can infer that

X̃iQ̃T̃ẽTk = ||xi||2 − 2xi ◦ q+ ||q||2 − τ2xi,k. (29)

By further combining the equation with Eq. (27), we have

d(xi,q) ≤ τxi,k ⇔ X̃iQ̃T̃ẽTk ≤ 0. (30)
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Thus, privately determining “d(xi,q) ≤ τxi,k” is equivalent
to privately determine that of “X̃iQ̃T̃ẽTk ≤ 0”. Considering
that X̃i, Q̃, T̃, ẽk are either vectors or matrices, we utilize
matrix encryption to devise our RPE scheme for protecting
the privacy of the determination “X̃iQ̃T̃ẽTk ≤ 0”. The
key idea is to split each of X̃i, Q̃, T̃, ẽk into two parts
{X̃i,1, X̃i,2}, {Q̃1, Q̃2}, {T̃1, T̃2}, {ẽk,1, ẽk,2} such that{

X̃i,1, X̃i,2 = X̃i; Q̃1 + Q̃2 = Q̃;

T̃1 + T̃2 = T̃; ẽk,1 + ẽk,2 = ẽk.
(31)

The splitting method is the same as that of FPE scheme. In
this case, we have

X̃iQ̃T̃ẽTk =
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

X̃i,uQ̃vT̃lẽ
T
k,z. (32)

Then, we use matrices to encrypt {X̃i,u, Q̃v, T̃l,

ẽk,z|{u, v, l, z} ∈ {1, 2}}. Since {X̃i,u, T̃l} and {Q̃v, ẽk,z}
are respectively held by the data owner and query user, they
will be independently encrypted into a ciphertext CX̃i,T̃

and
a trapdoor TDQ̃,ẽk

by the data owner and the query user

using RPE.Enc(s̃k, X̃i, T̃) and RPE.TrapdoorGen(s̃k, Q̃, ẽk)
algorithms below. Based on CP,T and TDQ,ek

, we can
do the refinement using RPE.RefineQuery(CX̃i,T̃

, TDQ̃,ẽk
)

algorithm below. Specifically, the RPE scheme is made
up of four algorithms, i.e., ΠRPE = (RPE.Setup,RPE.Enc,
RPE.TrapdoorGen,RPE.RefineQuery).
• RPE.Setup(d): Given the dimensions of data, i.e., d, the

setup algorithm first randomly selects a group of invertible
matrices as the secret key, i.e.,

s̃k = {M̃1,u,v,l,z, M̃2,u,v,l,z, M̃3,u,v,l,z, M̃′
1,u,v,l,z,

M̃′
2,u,v,l,z, M̃′

3,u,v,l,z|{u, v, l, z} ∈ {1, 2}}, (33)

where
{M̃1,u,v,l,z, M̃′

1,u,v,l,z} ∈ R(d+5)×(d+5)

{M̃2,u,v,l,z, M̃′
2,u,v,l,z} ∈ R5×5

{M̃3,u,v,l,z, M̃′
3,u,v,l,z} ∈ R(kmax+3)×(kmax+3).

(34)

• RPE.Enc(s̃k, X̃i, T̃): The encryption algorithm utilizes
s̃k to encrypt X̃i and T̃ in Eq. (28) as follows.

Step 1: The encryptor randomly splits X̃i into two
vectors X̃i,1 and X̃i,2 such that X̃i = X̃i,1 + X̃i,2, where
{X̃i,1, X̃i,2} ∈ Rd+2. Similarly, it randomly splits T̃ into
two matrices T̃1 and T̃2 such that T̃ = T̃1 + T̃2, where
{T̃1, T̃2} ∈ R2×kmax .

Step 2: The encryptor chooses a set of random numbers
in the real domain, including i) random numbers rX̃i

> 0,
rT̃ > 0, r′

X̃i
> 0, and r′

T̃
> 0; ii) random numbers

{rX̃i,u,v,l,z
, rT̃u,v,l,z

, rX̃′
i,u,v,l,z

, rT′
u,v,l,z

|{u, v, l, z} ∈ {1, 2}}
satisfying 1

2rX̃i
> rX̃i,u,v,l,z

> 0, 1
2rX̃i

> rT̃u,v,l,z
> 0,

1
2r

′
X̃i

> rX̃′
i,u,v,l,z

> 0, and 1
2r

′
X̃i

> rT̃′
u,v,l,z

> 0

for {u, v, l, z} ∈ {1, 2}; and iii) random numbers
{αX̃i,u,v,l,z

, αT̃u,v,l,z
, αX̃′

i,u,v,l,z
, αT̃′

u,v,l,z
|{u, v, l, z} ∈ {1,

2}} satisfying
∑2

u=1

∑2
v=1

∑2
l=1

∑2
z=1(αX̃i,u,v,l,z

αT̃u,v,l,z
+

αX̃′
i,u,v,l,z

αT̃′
u,v,l,z

) = 0, which are gener-
ated in a similar way to that of {αPu,v,l,z

,

αTu,v,l,z
, αP′

u,v,l,z
, αT′

u,v,l,z
|{u, v, l, z} ∈ {1, 2}}. These

random numbers are different for different X̃i’s and T̃’s.
Step 3: The encryptor encrypts X̃i into ciphertexts.
(1) Extend X̃i to a group of (d+ 5)-dimensional vectors

{Pu,v,l,z,P
′
u,v,l,z|{u, v, l, z} ∈ {1, 2}} as X̃i,u,v,l,z =

[
rX̃i
∗ X̃i,u −rX̃i,u,v,l,z

αX̃i,u,v,l,z
1
]

X̃′
i,u,v,l,z =

[
r′
X̃i
∗ X̃i,u −r′

X̃i,u,v,l,z
α′
X̃i,u,v,l,z

1
]
.

(35)

(2) Encrypt each X̃i,u,v,l,z and X̃′
i,u,v,l,z as CX̃i,u,v,l,z

= X̃i,u,v,l,zM̃1,u,v,l,z;

CX̃′
i,u,v,l,z

= X̃′
i,u,v,l,zM̃

′
1,u,v,l,z.

(36)

Step 4: The encryptor encrypts T̃ into ciphertexts.
(1) Extend T̃ to a group of 5 × (kmax + 3) matrices

{T̃u,v,l,z, T̃
′
u,v,l,z|{u, v, l, z} ∈ {1, 2}} as

T̃u,v,l,z =


rT̃ ∗ T̃l O O O

O rT̃u,v,l,z
0 0

O 0 αT̃u,v,l,z
0

O 0 0 1



T̃′
u,v,l,z =


r′
T̃
∗ T̃l O O O

O rT̃′
u,v,l,z

0 0

O 0 αT̃′
u,v,l,z

0

O 0 0 1

 .

(37)

(2) Encrypt each T̃u,v,l,z and T̃′
u,v,l,z into ciphertexts as CT̃u,v,l,z

= M̃−1
2,u,v,l,zT̃u,v,l,zM̃3,u,v,l,z;

CT̃′
u,v,l,z

= M̃′−1

2,u,v,l,zT̃
′
u,v,l,zM̃

′
3,u,v,l,z.

(38)

Step 5: The encryption algorithm finally out-
puts the ciphertext of X̃i and T̃, i.e., CX̃i,T̃

=
{CX̃i,u,v,l,z

, CX̃′
i,u,v,l,z

, CT̃u,v,l,z
, CT̃′

u,v,l,z
|{u, v, l, z} ∈ {1, 2}}.

• RPE.TrapdoorGen(s̃k, Q̃, ẽk): The trapdoor generation
algorithm utilizes the secret key s̃k to generate trapdoors for
Q̃ and ẽk in Eq. (3) as follows.

Step 1: The generator randomly splits Q̃ into two
matrices Q̃1 and Q̃2 such that Q̃ = Q̃1 + Q̃2, where
{Q̃1, Q̃2} ∈ R(d+2)×2 Similarly, it randomly splits ẽk into
two vectors ẽk,1 and ẽk,2 such that ẽk = ẽk,1 + ẽk,2, where
{ẽk,1, ẽk,2} ∈ Rkmax .

Step 2: The generator chooses a set of random numbers
in the real domain, including i) random numbers rQ̃ > 0,
rẽk

> 0, r′
Q̃

> 0, and r′ẽk
> 0; ii) random numbers

{rQ̃u,v,l,z
, rẽk,u,v,l,z

, rQ̃′
u,v,l,z

, rẽ′
k,u,v,l,z

|{u, v, l, z} ∈ {1, 2}}
such that 1

2rQ̃ > rQ̃u,v,l,z
> 0, 1

2rẽk
> rẽk,u,v,l,z

> 0,
1
2r

′
Q̃

> rQ̃′
u,v,l,z

> 0, and 1
2r

′
ẽk

> rẽ′
k,u,v,l,z

> 0

for {u, v, l, z} ∈ {1, 2}; and iii) random numbers
{αQ̃u,v,l,z

, αẽk,u,v,l,z
, αQ̃′

u,v,l,z
, αẽ′

k,u,v,l,z
|{u, v, l, z} ∈ {1, 2}}

satisfying
∑2

u=1

∑2
v=1

∑2
l=1

∑2
z=1(αQ̃u,v,l,z

αẽk,u,v,l,z
+

αQ̃′
u,v,l,z

αẽ′
k,u,v,l,z

) = 0, which are gener-
ated in a similar way to that of {αPu,v,l,z

,
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αTu,v,l,z
, αP′

u,v,l,z
, αT′

u,v,l,z
|{u, v, l, z} ∈ {1, 2}}. These

random numbers are different for different Q̃’s and ẽk’s.
Step 3: The generator generates trapdoors for Q̃.
(1) Extend Q̃ to a group of (d + 5) × 5 matrices

{Q̃u,v,l,z, Q̃
′
u,v,l,z|{u, v, l, z} ∈ {1, 2}} as

Q̃u,v,l,z =


rQ̃ ∗ Q̃v O O O

O rQ̃u,v,l,z
0 0

O 0 1 0

O 0 0 αQ̃u,v,l,z



Q̃′
u,v,l,z =


r′
Q̃
∗ Q̃v O O O

O rQ̃′
u,v,l,z

0 0

O 0 1 0

O 0 0 αQ̃′
u,v,l,z

 .

(39)

(2) Encrypt each Q̃u,v,l,z and Q̃′
u,v,l,z into trapdoors as TDQ̃u,v,l,z

= M̃−1
1,u,v,l,zQ̃u,v,l,zM̃2,u,v,l,z;

TDQ̃′
u,v,l,z

= M̃′−1

1,u,v,l,zQ̃
′
u,v,l,zM̃

′
2,u,v,l,z.

(40)

Step 4: The generator generates trapdoors for ẽk.
(1) Extend ẽk to a group of (kmax + 3)-dimensional

vectors {ẽk,u,v,l,z, ẽ′k,u,v,l,z|{u, v, l, z} ∈ {1, 2}} as ẽk,u,v,l,z =
[
rẽk
∗ ẽk,z rẽk,u,v,l,z

1 αẽk,u,v,l,z

]
ẽ′k,u,v,l,z =

[
r′ẽk
∗ ẽk,z rẽ′

k,u,v,l,z
1 αẽ′

k,u,v,l,z

]
.

(41)

(2) Encrypt each ẽk,u,v,l,z and ẽ′k,u,v,l,z into trapdoors as{
TDẽk,u,v,l,z

= M̃−1
3,u,v,l,zẽ

T
k,u,v,l,z;

TDẽ′
k,u,v,l,z

= M̃′−1

3,u,v,l,zẽ
′T
k,u,v,l,z.

(42)

Step 5: The trapdoor generation algorithm finally
outputs the trapdoor of Q̃ and ẽk, i.e., TDQ̃,ẽk

=
{TDQ̃u,v,l,z

, TD′ẽk,u,v,l,z
, TDQ̃u,v,l,z

, TD′ẽk,u,v,l,z
|{u, v, l, z} ∈

{1, 2}}.
• RPE.RefineQuery(CX̃i,T̃

, TDQ̃,ẽk
): On input the cipher-

text CX̃i,T̃
and the trapdoor TDQ̃,ẽk

, the evaluator first
calculates

s̃ =
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

(CX̃i,u,v,l,z
TDQ̃u,v,l,z

CT̃u,v,l,z
TDẽk,u,v,l,z

+

CX̃′
i,u,v,l,z

TDQ̃′
u,v,l,z

CT̃′
u,v,l,z

TDẽ′
k,u,v,l,z

). (43)

If s̃ < 0, the evaluator returns 1 to demonstrate that
“X̃iQ̃T̃ẽTk ≤ 0” and returns 0 to demonstrate that
“X̃iQ̃T̃ẽTk > 0” otherwise.

Theorem 3 The RPE scheme is correct.

Proof. The correctness of the RPE scheme can be proved
in a similar way to that of the FPE scheme. Due to page
limitation, we omit the detailed proof here.

6 OUR PRKNN SCHEME

This section introduces our PRkNN scheme, which uses
the FPE scheme and RPE scheme to preserve the pri-
vacy of the MM-tree based reverse kNN query algo-
rithm. Our scheme is defined as ΠPRkNN = (PRkNN.Setup,
PRkNN.Outsource,PRkNN.TrapdoorGen, PRkNN.Query).
• PRkNN.Setup(d, κ) : In the setup algorithm, on input

the dimensions of data d and a security parameter κ, the
data owner setups the scheme by generating some secret
keys as sk ←− FPE.Setup(d), s̃k ←− RPE.Setup(d) and

K
$
∈ {0, 1}κ. Then, it distributes these keys to query users

via a secure channel as the authorized keys.
• PRkNN.Outsource(sk, s̃k,K,X ) : On input the secret

keys {sk, s̃k,K}, the data owner outsources its dataset X =
{xi}ni=1 to the cloud server by following the steps below.

Step 1: Build an MM-tree T for the dataset X .
Step 2: Encrypt internal nodes of the MM-tree T. For

each internal node with (p, τ, Lp = [τp,1, τp,2, · · · , τp,kmax ]),
the data owner constructs a vector P and a matrix T based
on its key values as Eq. (3), and further utilizes the FPE
scheme to encrypt them as CP,T ←− FPE.Enc(sk,P,T).

Step 3: Encrypt leaf nodes of the MM-tree T. For each
leaf node with (xi, Lxi = [τxi,1, τxi,2, · · · , τxi,kmax ]), the
data owner constructs a matrix X̃i and a vector T̃ based
on its key values as Eq. (28), and utilizes the RPE scheme to
encrypt them as CX̃i,T̃

←− RPE.Enc(s̃k, X̃i, T̃).
Besides, the data owner leverages the AES encryption

algorithm to encrypt xi as AESK(xi). In this case, the ci-
phertext of the leaf node will be {CX̃i,T̃

, AESK(xi)}.
Step 4: The data owner outsources the encrypted MM-

tree, denoted by E(T), to the cloud server.
• PRkNN.TrapdoorGen(sk, s̃k,q, k) : On input the secret

keys {sk, s̃k} and a reverse kNN query request (q, k), the
query user generates query trapdoors for (q, k), including a
filter trapdoor and a refinement trapdoor, as follows.

Step 1: Generate a filter trapdoor. The query user first
constructs a matrix Q and a vector ek based on (q, k) as
Eq. (3). Then, it utilizes the FPE scheme to generate a filter
trapdoor as TDQ,ek

←− FPE.TrapdoorGen(sk,Q, ek).
Step 2: Generate a refinement trapdoor. The query

user first constructs a matrix Q̃ and a vector ẽk
based on (q, k) as Eq. (28). Then, it utilizes the RPE
scheme to generate a refinement trapdoor as TDQ̃,ẽk

←−
RPE.TrapdoorGen(s̃k, Q̃, ẽk).

Step 3: The query user sends query trapdoors
{TDQ,ek

, TDQ̃,ẽk
} to the cloud server.

• PRkNN.Query(E(T), TDQ,ek
, TDQ̃,ẽk

,K) : On receiv-
ing the query trapdoors {TDQ,ek

, TDQ̃,ẽk
}, the cloud server

searches on E(T) for the query result. Similar to the re-
verse kNN query algorithm on plaintext data, the search
algorithm on encrypted data includes a filter stage and a
refinement stage. The only difference is that the inequal-
ities “d(p,q) > 2τ + τp,k” and “d(xi,q) ≤ τxi,k” are
replaced with “FPE.FilterQuery(CP,T, TDQ,ek

) == 1” and
“RPE.RefineQuery(CX̃i,T̃

, TDQ̃,ẽk
) == 1”. After running the

search algorithm, the cloud server obtains the query result
R = {AESK(xi)|RPE.FilterQuery(CX̃i,T̃

, TDQ̃,ẽk
) == 1}

and sends it to the query user as the query response.
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On receiving the query resultR, the query user decrypts
each AESK(xi) ∈ R to obtain the plaintext record xi.

7 SECURITY ANALYSIS

In this section, we first rigorously prove the security of
the FPE scheme and the RPE scheme. Then, we prove the
security of our PRkNN scheme.

7.1 Security of FPE Scheme

We rigorously prove the selective security of the FPE scheme
through a simulation-based real/ideal worlds model, in
which ciphertexts and trapdoors in the real world are gen-
erated by following the FPE scheme while those in the ideal
world are simulated based on its leakage. Since the real
world is the same as our FPE scheme, we only concentrate
on formalizing the ideal world, before which we first take a
look at the leakage of our FPE scheme.

Leakage. Given an internal node with (p, τ, Lp =
[τp,1, τp,2, · · · , τp,kmax

]) and a query request (q, k), the
FPE scheme leaks i) the dimensions of records, ci-
phertexts and trapdoors: d; ii) the maximum value of
k: kmax; and iii) the filter predicate evaluation result:
FPE.FilterQuery(CP,T, TDQ,ek

).
Based on the above-mentioned leakage, we formalize the

ideal world as follows.
Ideal world. To prove the selective security of the FPE

scheme, we define our own ideal model by following that
defined in [29], in which a probability polynomial time
(PPT) adversary and a simulator with the above leakage
sequentially execute the following stages.
• Setup: At the beginning of the setup stage, the ad-

versary carefully selects key values of an internal node,
namely, (p, τ, Lp = [τp,1, τp,2, · · · , τp,kmax

]), where p is
a d-dimensional integer record, τ is a non-negative inte-
ger, and Lp is an integer list with kmax elements. Then,
the adversary sends them to the simulator. Upon receiv-
ing (p, τ, Lp), the simulator randomly selects a group of
vectors and matrices {ĈPu,v,l,z

, ĈP′
u,v,l,z

, ĈTu,v,l,z
, ĈT′

u,v,l,z
},

where ĈPu,v,l,z
, ĈP′

u,v,l,z
∈ Rd+6 and ĈTu,v,l,z

, ĈT′
u,v,l,z

∈
R6×kmax for {u, v, l, z} ∈ {1, 2}. Meanwhile, the simula-
tor employs these random vectors and matrices to con-
struct the ciphertext of the internal node as ĈP,T =
{ĈPu,v,l,z

, ĈP′
u,v,l,z

, ĈTu,v,l,z
, ĈT′

u,v,l,z
|{u, v, l, z} ∈ {1, 2}}.

• First stage of trapdoor generation: At this stage, the
adversary sends γ1 carefully selected reverse kNN query
requests {(qj , kj)}γ1

j=1 to the simulator, where γ1 is a poly-
nomial number, qj is a d-dimensional integer record, and kj
is a positive integer satisfying kj ≤ kmax for 1 ≤ j ≤ γ1. Af-
ter receiving these query requests, the simulator constructs
the trapdoor for each (qj , kj) as the following steps.

Step 1: The simulator selects a random number ŝj based
on the leakage FPE.FilterQuery(CP,T, TDQj ,ej,k

), where{
ŝj > 0 FPE.FilterQuery(CP,T, TDQj ,ej,k

) == 1

ŝj < 0 FPE.FilterQuery(CP,T, TDQj ,ej,k
) == 0.

(44)

Step 2: The simulator randomly selects a group of
vectors and matrices {T̂DQj,u,v,l,z

, T̂DQ′
j,u,v,l,z

, T̂Dej,k,u,v,l,z
,

T̂De′
j,k,u,v,l,z

|{u, v, l, z} ∈ {1, 2}} such that

ŝj =
2∑

u=1

2∑
v=1

2∑
l=1

2∑
z=1

(ĈPj,u,v,l,z
T̂DQj,u,v,l,z

ĈTj,u,v,l,z
T̂Dej,k,u,v,l,z

+ ĈP′
j,u,v,l,z

T̂DQ′
j,u,v,l,z

ĈT′
j,u,v,l,z

T̂De′
j,k,u,v,l,z

), (45)

where {T̂DQj,u,v,l,z
, T̂DQ′

j,u,v,l,z
} ∈ R(d+6)×(d+6) and

{T̂Dej,k,u,v,l,z
, T̂De′

j,k,u,v,l,z
} ∈ Rkmax+3. The simulator

further regards these random vectors and matrices
as the trapdoor of (qj , kj), denoted by T̂DQj ,ej,k

=

{T̂DQj,u,v,l,z
, T̂DQ′

j,u,v,l,z
, T̂Dej,k,u,v,l,z

, T̂De′
j,k,u,v,l,z

|{u, v, l, z}
∈ {1, 2}}.

Step 3: The simulator returns all constructed trapdoors
{T̂DQj ,ej,k

}γ1

j=1 to the adversary.
• Challenge stage: The simulator sends the ciphertext ĈP,T

to the adversary.
• Second stage of trapdoor generation: At this stage, the

adversary launches the second round of trapdoor genera-
tion requests. Similar to the first stage, the adversary gets
the query trapdoors of γ2 carefully selected reverse kNN
query requests {(qj , kj)}γ2

j=1 from the simulator, denoted
by {T̂DQj ,ej,k

}γ2

j=1, where γ2 is a polynomial number.
The aforementioned formalization demonstrates the

adversary in the ideal world can view the ciphertext
ĈP,T and trapdoors {T̂DQj ,ej,k

}γ1+γ2

j=1 . That is, ViewIdeal =

{ĈP,T, {T̂DQj ,ej,k
}γ1+γ2

j=1 }. While those corresponding ci-
phertext and trapdoors in the real world will be gener-
ated by following the FPE scheme, denoted by ViewReal =
{CP,T, {TDQj ,ej,k

}γ1+γ2

j=1 }. The security of the FPE scheme
is formalized based on ViewReal and ViewIdeal as shown in
Definition 2.

Definition 2 (Security of FPE Scheme) The FPE scheme is
selectively secure iff the adversary only has a negligible probability
to distinguish ViewReal and ViewIdeal.

Theorem 4 The FPE scheme is selectively secure.

Proof. Since the security of the FPE scheme depends
on the indistinguishability of ViewReal and ViewIdeal, we
concentrate on proving that ViewReal is indistinguishable
from ViewIdeal. From the formalization of the ideal world, it
is obvious that the ciphertext and trapdoors in ViewIdeal are
random vectors or matrices. As a consequence, we will focus
on proving that the ciphertext and trapdoors in ViewReal are
indistinguishable from random vectors and matrices. Since
ViewReal includes one ciphertext CP,T and γ1+γ2 trapdoors
{TDQj ,ej,k

}γ1+γ2

j=1 , we will prove the indistinguishability be-
tween ViewReal with random vectors and matrices from
three aspects below.

(1) CP,T is indistinguishable from a random cipher-
text. In the filter predicate encryption scheme, we have
CP,T = {CPu,v,l,z

, CP′
u,v,l,z

, CTu,v,l,z
, CT′

u,v,l,z
|{u, v, l, z} ∈

{1, 2}}, where
CPu,v,l,z

= Pu,v,l,zM1,u,v,l,z;

CP′
u,v,l,z

= P′
u,v,l,zM

′
1,u,v,l,z;

CTu,v,l,z
= M−1

2,u,v,l,zTu,v,l,zM3,u,v,l,z;

CT′
u,v,l,z

= M′−1
2,u,v,l,zT

′
u,v,l,zM

′
3,u,v,l,z.

(46)
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On the one hand, the vector CPu,v,l,z
is calculated by

Pu,v,l,zM1,u,v,l,z , where

Pu,v,l,z =
[
rP ∗Pu −rPu,v,l,z

αPu,v,l,z
1
]

(47)

and M1,u,v,l,z is an unknown secret matrix. Since the vec-
tor Pu is an unknown vector and {rP, rPu,v,l,z

, αPu,v,l,z
}

are random numbers, Pu,v,l,z can be regarded as an un-
known random vector. By combining the unknownness of
M1,u,v,l,z , we can deduce that CPu,v,l,z

is indistinguishable
from a random vector. In a similar way, we can easily prove
that CP′

u,v,l,z
is also a random vector.

On the other hand, the matrix CTu,v,l,z
is calculated by

M−1
2,u,v,l,zTu,v,l,zM3,u,v,l,z , where

Tu,v,l,z =


rT ∗Tl O O O

O rTu,v,l,z
0 0

O 0 αTu,v,l,z
0

O 0 0 1

 (48)

and {M2,u,v,l,z,M3,u,v,l,z} are two unknown secret ma-
trices. Since the vector Tl is an unknown matrix and
{rT, rTu,v,l,z

, αTu,v,l,z
} are random numbers, Tu,v,l,z can

be regarded as an unknown matrix. By combining the
unknownness of {M2,u,v,l,z,M3,u,v,l,z}, we can infer that
CTu,v,l,z

is indistinguishable from a random matrix. Simi-
larly, we can prove that CT′

u,v,l,z
is also a random matrix.

(2) {TDQj ,ej,k
}γ1+γ2

j=1 are indistinguishable
from random trapdoors. We have TDQj ,ej,k

=
{TDQj,u,v,l,z

, TDQ′
j,u,v,l,z

, TDej,k,u,v,l,z
, TDe′

j,k,u,v,l,z
|CP,T =

{CPu,v,l,z
, CP′

u,v,l,z
, CTu,v,l,z

, CT′
u,v,l,z

|{u, v, l, z} ∈ {1, 2}},
where

TDQj,u,v,l,z
= M−1

1,u,v,l,zQj,u,v,l,zM2,u,v,l,z;

TDQ′
j,u,v,l,z

= M′−1
1,u,v,l,zQ

′
j,u,v,l,zM

′
2,u,v,l,z;

TDej,k,u,v,l,z
= M−1

3,u,v,l,ze
T
j,k,u,v,l,z;

TDe′
j,k,u,v,l,z

= M′−1
3,u,v,l,ze

′T
j,k,u,v,l,z.

(49)

Similar to the proof of indistinguishability between
CP,T and a random ciphertext, since values in
{Qj,u,v,l,z, ej,k,u,v,l,z} are either unknown or random
numbers; and {M1,u,v,l,z,M2,u,v,l,z,M3,u,v,l,z} are
unknown secret matrices, we can deduce that TDQj,u,v,l,z

and TDej,k,u,v,l,z
are indistinguishable from a random matrix

and a random vector, respectively, which also works for
TDQ′

j,u,v,l,z
and TDe′

j,k,u,v,l,z
.

(3) The combination of CP,T and {TDQj ,ej,k
}γ1+γ2

j=1

is indistinguishable from random numbers. Hav-
ing both CP,T and {TDQj ,ej,k

}γ1+γ2

j=1 enables the
adversary to remove some random numbers and
unknown secret matrices through computing sj , i.e.,
sj =

∑2
u=1

∑2
v=1

∑2
l=1

∑2
z=1(CPj,u,v,l,z

TDQj,u,v,l,z
CTj,u,v,l,z

TDej,k,u,v,l,z
+ CP′

j,u,v,l,z
TDQ′

j,u,v,l,z
CT′

j,u,v,l,z
TDe′

j,k,u,v,l,z
) =

(rP,Qj ,T,ej,k
+ r′P,Qj ,T,ej,k

)(PQjTe
T
j ) −

∑2
u=1

∑2
v=1∑2

l=1

∑2
z=1(rP,Qj ,T,ej,k,u,v,l,z

+ r′P,Qj ,T,ej,k,u,v,l,z
)

for 1 ≤ j ≤ γ1 + γ2. Although some random
numbers and unknown secret matrices have been
removed, the computed value sj still contains random
numbers {rP,Qj ,T,ej,k

, r′P,Qj ,T,ej,k
, (rP,Qj ,T,ej,k,u,v,l,z

+
r′P,Qj ,T,ej,k,u,v,l,z

)|{u, v, l, z} ∈ {1, 2}}, which makes
sj indistinguishable from a random number. Thus,

the combination of CP,T and {TDQj ,ej,k
}γ1+γ2

j=1 is
indistinguishable from random numbers.

In summary, the adversary has a negligible probability
to distinguish the ciphertext and trapdoors in ViewIdeal from
random ones. Thus, the FPE scheme is selectively secure.

7.2 Security of RPE Scheme
Similar to the proof of the FPE scheme, we can prove that
the RPE scheme is selectively secure in the simulation-
based real/ideal model, but the RPE scheme has a different
leakage, as shown below.

Leakage. Given a leaf node with (xi, Lxi
=

[τxi,1, τxi,2, · · · , τxi,kmax
]) and a query request (q, k), the

RPE scheme leaks i) the dimensions of records, cipher-
texts and trapdoors: d; ii) the maximum value of k:
kmax; and iii) the refinement predicate evaluation result:
RPE.FilterQuery(CX̃i,T̃

, TDQ̃,ẽk
).

Based on the leakage, we can formalize the ideal world
of the RPE scheme and define its selective security. Since the
proof is similar to that of the FPE scheme, we omit detailed
proof description here.

7.3 Security of PRkNN
Relying on the security of the FPE scheme and RPE scheme,
we show that our PRkNN scheme can preserve the privacy
of the outsourced dataset and reverse kNN query requests.
• The outsourced dataset is privacy-preserving. The dataset

X , which is represented by an encrypted MM-tree E(T),
is stored and searched in the cloud, and demands to be
kept private from the honest-but-curious cloud server. Com-
monly, there are two ways for the cloud server to infer the
dataset X from E(T). One is to make inference from the
static encrypted tree E(T), and the other is from the process
of tree search. However, both of them are in vain.

On the one hand, when E(T) is in a static state, internal
nodes are encrypted by the FPE scheme, and leaf nodes are
encrypted by the RPE scheme and AES encryption. Since
the security of AES encryption is well recognized; and that
of the FPE and RPE schemes has been proved in Section 7.1
and Section 7.2, the cloud server is clueless to infer the
dataset X from ciphertexts of E(T)’s internal nodes and
leaf nodes. Hence, the dataset is privacy-preserving in the
static state. On the other hand, when the tree is searched by
the cloud server for reverse kNN queries, compared with
the case in the static tree, the cloud server can additionally
obtain the filter and refinement predicate evaluation results
on each internal node and leaf node, respectively. However,
the security of the FPE and RPE schemes ensures the cloud
server is still clueless to infer the dataset X even with the
evaluation results. Thus, the dataset is privacy-preserving.
• The reverse kNN query requests are privacy-preserving.

Each reverse kNN query (q, k) is sent to the cloud server
in the form of the corresponding trapdoors {TDQ,ek

, TDQ̃,ẽk
}

that are respectively generated by the FPE and RPE schemes.
The security of these two schemes proved in Section 7.1 and
Section 7.2 contributes to the privacy protection of the query
(q, k) such that the cloud server is clueless to infer the query
(q, k). Same as the above privacy preservation analysis of
the dataset, when the cloud server searches this query on
E(T), it can obtain the the filter and refinement predicate
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evaluation results of {TDQ,ek
, TDQ̃,ẽk

} on each internal node
and leaf node. However, the security of the FPE and RPE
schemes ensures that the query (q, k) is privacy-preserving
even with the leakage of these evaluation results. Therefore,
reverse kNN query requests are privacy-preserving.

8 PERFORMANCE EVALUATION

In this section, we theoretically and experimentally analyze
the performance of our scheme.

8.1 Theoretical Analysis
We analyze the computational complexity and storage over-
head of our scheme.

8.1.1 Computational Complexity
We analyze the computational complexity of our scheme
with respect to data outsourcing, trapdoor generation, and
query processing.
• Computational Complexity of Data Outsourcing. Our

scheme represents a dataset to an MM-tree and encrypts
it before being outsourced to the cloud server. Building an
MM-tree includes two steps, i.e., build an M-tree based on
the dataset and transform the M-tree to an MM-tree by
attaching an additional distance list to each of internal and
leaf nodes. The former step requires O(n ∗d) computational
complexity, and the later step requires O(n∗log2 n∗d∗kmax)
computational complexity. When encrypting MM-tree, in-
ternal and leaf nodes are respectively encrypted using
FPE.Enc(sk,P,T) and RPE.Enc(s̃k, X̃i, T̃) algorithms. En-
crypting an internal node requires O(32 ∗ (d + 6)2 + 32 ∗
36 ∗ (kmax + 3) + 32 ∗ 6 ∗ (kmax + 3)2) computational com-
plexity, i.e., O(d2 + k2max). Encrypting a leaf node requires
O(32∗(d+5)2+32∗25∗(kmax+3)+32∗5∗(kmax+3)2) compu-
tational complexity, i.e., O(d2 + k2max). Thus, encrypting the
entire MM-tree takes O(n∗(d2+k2max)) computational com-
plexity, and the overall computational complexity of data
outsourcing will be O(n∗ log2 n∗d∗kmax+n∗ (d2+k2max)).
• Computational Complexity of Trapdoor Generation. A

query trapdoor includes a filter trapdoor and a refinement
trapdoor. Generating a filter trapdoor requires O(32∗6∗(d+
6)2+32∗36∗ (d+6)+32∗ (kmax+3)2) computational com-
plexity, i.e., O(d2+k2max). Generating a refinement trapdoor
requires O(32∗5∗(d+5)2+32∗25∗(d+6)+32∗(kmax+3)2)
computational complexity, i.e., O(d2 + k2max).
• Computational Complexity of Query Processing. Process-

ing a reverse kNN query request is to search on an en-
crypted MM-tree for the query result. Searching an internal
node takes O(32∗6∗(d+6)+32∗6∗(d+6)∗(kmax+3)+32∗
6 ∗ (kmax + 3)) computational complexity, i.e., O(d ∗ kmax).
Searching a leaf node takes O(32∗5∗(d+5)+32∗5∗(d+5)∗
(kmax + 3)+ 32 ∗ 5 ∗ (kmax + 3)) computational complexity,
i.e., O(d ∗ kmax). The computational complexity of a reverse
kNN query will be O(k ∗ log2 n ∗ d ∗ kmax).

8.1.2 Storage Overhead
We analyze the storage overhead of encrypted MM-tree and
query trapdoor in our scheme.
• Storage Overhead of Encrypted MM-tree. The en-

crypted MM-tree contains internal nodes and leaf nodes.

The ciphertext of each internal node is in the form of
CP,T = {CPu,v,l,z

, CP′
u,v,l,z

, CTu,v,l,z
, CT′

u,v,l,z
|{u, v, l, z} ∈

{1, 2}}. The corresponding storage overhead includes
32 ∗ (d + 6) + 32 ∗ 6 ∗ (kmax + 3) real numbers,
i.e., O(d + kmax). The ciphertext of each leaf node
is in the form of {CX̃i,T̃

, AESK(xi)}, where CX̃i,T̃
=

{CX̃i,u,v,l,z
, CX̃′

i,u,v,l,z
, CT̃u,v,l,z

, CT̃′
u,v,l,z

|{u, v, l, z} ∈ {1, 2}}.
The corresponding storage overhead includes 32 ∗ (d+5)+
32 ∗ 5 ∗ (kmax + 3) real numbers and an AES ciphertext.
Thus, the storage overhead of the entire MM-tree will be
O(n ∗ (d+ kmax)) and n AES ciphertexts.
• Storage Overhead of Query Trapdoor. A query trapdoor

in our scheme includes a filter trapdoor and a refinement
trapdoor. The filter trapdoor is in the form of TDQ̃,ẽk

=
{TDQ̃u,v,l,z

, TD′ẽk,u,v,l,z
, TDQ̃u,v,l,z

, TD′ẽk,u,v,l,z
|{u, v, l, z} ∈

{1, 2}}. The storage overhead includes 32 ∗ 6 ∗ (d + 6) +
32 ∗ (kmax + 3) real numbers. The refinement trapdoor is
in the form of TDQ̃,ẽk

= {TDQ̃u,v,l,z
, TD′ẽk,u,v,l,z

, TDQ̃u,v,l,z
,

TD′ẽk,u,v,l,z
|{u, v, l, z} ∈ {1, 2}}. The storage overhead

includes 32∗5∗ (d+5)+32∗ (kmax+3) real numbers. Thus,
the storage overhead of the entire trapdoor is O(d+ kmax).

8.2 Experimental Analysis
In this section, we experimentally analyze the computa-
tional costs of data outsourcing, trapdoor generation, and
query processing in our scheme. For the existing schemes
[6]–[10], the schemes in [6], [7] cannot return accurate query
results; the scheme in [8] cannot protect the dataset privacy;
the scheme in [9] is not applicable to multi-dimensional
data; and the scheme in [10] requires to predefine the
parameter k, as shown in Table 1. In this case, our scheme
is the first privacy-preserving reverse kNN query scheme
that can simultaneously return accurate query results and
support multi-dimensional data and a flexible choice of k
only with the constraint of k ≤ kmax. As a result, existing
schemes are not competitors of our scheme.

Experimental Setting. We implemented our scheme in
Java and conducted experiments on a machine with Apple
M1 chip, 16 GB RAM, and macOS Big Sur operating system.
In our implementation, we set the security parameter as
κ = 256, and the fanout of the MM-tree is between 2 and
4. We perform the evaluation on a real forest Covertype
dataset from the UCI machine learning repository [30]. In
our experiment, we take 60000 records from the Covertype
dataset to be used for our performance evaluation, and
each one has 4 attributes that are chosen from the first ten
attributes of all attributes. To have an accurate experimental
results, each experiment is conducted 100 times repeatedly,
and the average computational costs are reported. Detailed
experimental results are described as follows.

8.2.1 Computational Cost
We evaluate the computations costs of data outsourcing,
trapdoor generation, and query processing.
• Data Outsourcing. The computational costs of tree

building and encryption are affected by three parameters,
including i) n: the size of the dataset; ii) d: the dimensions
of the dataset; iii) kmax: the maximum number of k. Thus,
the computational costs of data outsourcing depend on the
parameters {n, d, kmax}.
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TABLE 1
Comparison among our PRkNN scheme and existing schemes

Scheme Query Result Dataset Privacy #Data Dimension Parameter k

Du in [6] Approximate
√

Two Predefined (k = 1)
Lin in [7] Approximate

√
Two Flexible

Pournajaf in [8] Accurate × Two Flexible
Li in [9] Accurate

√
Two Predefined (k = 1)

Tzouramanis in [10] Accurate
√

Multi-dimensional Predefined (any k > 0)
Our PRkNN scheme Accurate

√
Multi-dimensional Flexible (k ≤ kmax)

“
√

” denotes the scheme satisfies the objective.
“×” denotes the scheme does not satisfy the objective.
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Fig. 3. Computational costs of data outsourcing

Fig. 3(a), Fig. 3(b), and Fig. 3(c) respectively depict the
computational costs of data outsourcing varying with n, d,
and kmax, including the computational costs of tree building
and encryption. Overall, these figures show that the compu-
tational costs of tree building (on cyan in figures) account
for a much larger proportion than that of tree encryption (on
dark blue in figures) during the process of data outsourcing.
This is because building an MM-tree requires to compute
kmax nearest neighbors for the center p of each internal
node and the data record xi of each leaf node, which is
computationally expensive even if over plaintext data. In
contrary, the computational costs of tree encryption are
much smaller, which demonstrates that both FPE and RPE
schemes are efficient in the data encryption.

Specifically, Fig. 3(a) shows how the computational costs
of data outsourcing vary with n. In this experiment, we set
n ∈ {10000, 20000, 30000, 40000, 50000}, d = 2, kmax = 5.
The results show that the computational costs of data out-
sourcing greatly increase with n, which is mainly caused
by the increasing computational costs of tree building. It
is reasonable because the MM-tree becomes large with the
increase of n. Similarly, Fig. 3(b) shows the computational
costs of data outsourcing increase with d due to the in-
creasing computational costs of tree building, where the
parameters are set as n = 10000, d ∈ {2, 3, 4}, kmax = 5.
Fig. 3(c) shows a different trend, i.e., the computational
costs of data outsourcing slowly increase with kmax due
to the increasing computational costs of tree encryption
rather than tree building, where the parameters are set as
n = 10000, d = 2, kmax = {5, 10, 15}.
• Trapdoor Generation. As described in theoretical anal-

ysis, the computational costs of trapdoor generation are

affected by the parameters d and kmax. In Fig. 4, we respec-
tively depict the computational costs of trapdoor generation
varying with d and kmax, including filter trapdoor gener-
ation and refinement trapdoor generation. From Fig. 4(a)
and Fig 4(b), we can see that the computational costs of
filter trapdoor generation are slightly higher than that of
refinement trapdoor generation, and the overall computa-
tional costs of trapdoor generation are low. For example,
generating a query trapdoor for a 2-dimensional data with
kmax = 10 only takes 0.189 ms. Meanwhile, Fig. 4(a) shows
the computational costs of trapdoor generation have an
increasing trend with the increase of d under the setting
of kmax = 10. Fig. 4(b) shows the computational costs
of trapdoor generation have an increasing trend with the
increase of kmax under the setting of d = 4. Thus, the com-
putational costs of trapdoor generation increase with kmax

and d, which is reasonable because the size of trapdoors
increases with kmax and d.

• Query Processing. As described in theoretical analysis,
the computational costs of reverse kNN query processing is
affected by the parameters {n, d, kmax, k}. In the following,
we respectively evaluate how these parameters affect the
computational costs of query processing, respectively.

Fig. 4(c) describes the computational costs of query
processing varying with n, where the parameters of this ex-
periment are set as n ∈ {10000, 20000, 30000, 40000, 50000,
60000}, d = 2, kmax = 5, and k = 1. Meanwhile, to
validate the efficiency of our filter strategy, we compare the
computational costs of our scheme with filter and without
filter. According to this figure, we can observe that there
is an growing trend for the computational costs of query
processing with the increase of n, and the filter strategy
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Fig. 4. Computational costs of trapdoor generation and query processing

can greatly improve the query efficiency. When n becomes
larger, our scheme with filter shows a more significant
advantage over that without filter, which demonstrates the
effectiveness of our filter strategy.

Fig. 4(d) describes the computational costs of query
processing varying with d, where the parameters of this
experiment are set as n = 30000, d ∈ {2, 3, 4}, kmax = 5,
and k = 1. Also, we compare the computational costs
of our scheme with filter and without filter to validate
the effectiveness of our filter strategy. This figure shows
that the computational costs of our scheme without filter
slightly grow with d. This is because the increase of d will
lead to the slight increase of query processing in the FPE
and RPE schemes, which are respectively used for filtering
internal nodes and refining leaf nodes during the process
of query processing. Meanwhile, the computational costs of
our scheme with filter do not have an obvious increasing
trend with d. When d = 3, the computational costs are even
lower than that when d = 2. This is because the change of
d will affect the structure of the MM-tree, which will lead
to the uncertain influence on the computational costs of
query processing. Luckily, the overall computational costs
with filter are much smaller than that without filter.

Fig. 4(e) describes the computational costs of query
processing varying with k, where the parameters of this
experiment are set as n = 30000, d = 2, kmax = 5, and
k ∈ {1, 3, 5}. This figure shows that the computational
costs of our scheme with filter slightly grow with k. This
is because the increase of k will lead to a larger number

TABLE 2
Storage overhead of encrypted MM-tree with n

Size of
Dataset n = 10000 n = 20000 n = 30000 n = 40000 n = 50000

Storage
Overhead 43.51 MB 87.24 MB 130.83 MB 174.65 MB 218.27 MB

*We set d = 2 and kmax = 5.

of data records in the query results, which requires more
computational costs to filter internal nodes and refine leaf
nodes of the MM-tree, respectively. The computational costs
of our scheme without filter keep unchanged because the
query in this case is processed by linear traversing and the
computational costs are not affected by k.

Fig. 4(f) describes the computational costs of query pro-
cessing varying with kmax, where the parameters of this
experiment are set as n = 30000, d = 2, kmax ∈ {5, 10, 15},
and k = 2. This figure shows that the computational costs of
our scheme with filter grow with kmax, and the advantage
of the filter strategy will degrade with the increase of kmax.
Similarly, the computational costs of our scheme without
filter also grow with kmax, but the increasing rate is slower.
Luckily, our scheme with filter is still more efficient than
that without filter.

8.2.2 Storage Overhead
We evaluate the storage overhead of encrypted MM-tree and
query trapdoor.
• Storage Overhead of Encrypted MM-tree. As described in

theoretical analysis, the storage overhead of encrypted MM-
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TABLE 3
Storage overhead of encrypted MM-tree with d

#Dimensions d = 2 d = 3 d = 4 d = 5 d = 6

Storage
Overhead 43.51 MB 44.51 MB 45.14 MB 45.60 MB 46.06 MB

* We set n = 10000 and kmax = 5.

TABLE 4
Storage overhead of encrypted MM-tree with kmax

kmax kmax = 5 kmax = 10 kmax = 15 kmax = 20 kmax = 25

Storage
Overhead 43.51 MB 58.25 MB 72.98 MB 87.72 MB 102.45 MB

* We set n = 10000 and d = 2.

tree is affected by n, d, and kmax. In Table 2, Table 3, and
Table 4, we depict the storage overhead of encrypted MM-
tree varying with n, d, and kmax, respectively. From these
tables, we can see that the storage overhead increases with
n, d, and kmax.
• Storage Overhead of Query Trapdoor. As described in the

theoretical analysis, the storage overhead of query trapdoor
is affected by d and kmax. In Table 5 and Table 6, we depict
the storage overhead of query trapdoor varying with d and
kmax, respectively. From these tables, we can see that the
storage overhead increases with d and kmax.

9 CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving reverse kNN query scheme in the outsourced
scenario, which can preserve the data privacy and support
the flexible choice of query records and the parameter k only
with constraint of k ≤ kmax. Specifically, we first designed
an MM-tree to index the dataset, and based on it, we
introduced an MM-tree based reverse kNN query algorithm
that improves the query efficiency through a filter strategy.
Then, we employed the lightweight matrix encryption to
carefully design the FPE and RPE schemes. After that, we
proposed our PRkNN scheme by applying the FPE and
RPE schemes to preserve the privacy of the reverse kNN
query algorithm. In our future work, we plan to design a
privacy-preserving reverse kNN query scheme supporting
the dynamic update of the dataset.
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